Open Access
Subscription or Fee Access
Global Assessment of a Cable-Stayed Bridge Model Using SNLSE Approach
Abstract
Global assessment of structural conditions is important for structural health monitoring system. In particular, online or almost online structural parametric identification, based on vibration data measured from sensors, has received considerable attention recently. However, the problem becomes more challenging when the structure is complex and the number of degree-of-freedom (DOF) is large. A newly proposed time domain analysis methodology, referred to as the sequential nonlinear LSE (SNLSE) approach, has been studied and shown to be useful for the online tracking of parameters for structures with small DOFs. In this paper, the SNLSE approach will be applied for global assessment of an experimental cable-stay bridge model with large DOFs. A dynamic equivalent model of the bridge will be established and finite element analysis will be carried out to formulate the equation of motion. Numerical analysis will be conducted with different simulated damage scenarios and limited number of response data is considered. The capability of the proposed SNLSE approach in identifying the structural parameters and assessing the structural conditions will be verified.